
 Page 1/8

Requirement management from System modeling to AUTOSAR
SW Components

A. Albinet1, L. Quéran2, B. Sanchez1, Y. Tanguy3

1. Continental Automotive SAS, 1 Av. Paul Ourliac BP 83649 31036 Toulouse
2. Geensoft, 120, rue René Descartes 29280 Plouzané
3. CEA, LIST, Laboratory of model driven engineering for embedded systems (LISE),

Boîte Courrier 94, Gif sur Yvette 91191 France

Abstract: Problems detected in the V&V phases or
even after deliveries can be huge regarding the cost
associated to an early detection during the
development cycle. This is usually linked to lost or
misunderstanding during exchange of specification
between the different teams of the development
process. Furthermore, the description of software
component as proposed by AUTOSAR, suffers from
the impossibility to give a description of such
component at a higher abstraction level.

This paper intends to present the methodology and
the toolset achieved within the EDONA [1] work
package 1. First, the EAST-ADL2 [4] system
architecture description to AUTOSAR [2] software
components modeling is described. In a second part,
this paper focuses on the problem of requirement
linking and traceability management during the
development. In the last part EDONA results
regarding verification and validation during the
modeling process are discussed. This work is tested
in EDONA against an industrial use case provided by
Continental. This use case consists in an
understandable function within vehicles, the Turn
Signal Indicator, which will be used all along this
paper to illustrate the proposed method and toolset.

Keywords: Modeling, Methodology, Requirements,

EAST-ADL2, AUTOSAR.

1. Introduction

Regular chaos reports have shown that five of the top
ten challenged factors for software intensive system
project are strongly related to requirements
specification being not reliable, inconsistent, unclear,
or basically lost during exchange of specification
between the different companies or teams at the
different stages of the development process. Such
errors can occur during contents exchanges and
communication issues, leading to loss or mismatch of
information. In the automotive, such issue is
facilitated by the OEM-Suppliers organization and the
multi discipline environment (system, hardware,
software, basic software).

In this context, requirement traceability and analysis
is a key issue in a design flow for electronic
embedded systems. Industrials from IT have
proposed and developed standards and engineering
tools which partially cover these needs. The
relationship between the initial expression of
requirements and their impact on solution models is
not fully established. Despite a lot of efforts,
requirement management and traceability still
remains a challenging problem in the automotive
industry. Automotive applications design process
should comply with safety standards (ISO26262) and
customer expectations which impose vertical,
horizontal and bi-directional traceability of
requirements.

AUTOSAR is already recognized as a major success
for interoperability, integration and communication
needs in the automotive industry. Despite of that, the
description of software component as proposed by
AUTOSAR, suffers from the impossibility to give a
description of such component at a higher abstraction
level. Being able to represent a system at several
abstraction levels or from several points of view is a
key requirement in order to deal with system
complexity and to allow system verification earlier
than during the AUTOSAR implementation phases.

As a response to this need the EAST-ADL2 language
has been defined, and taken into account by the
methodology promoted in EDONA. Also the
methodology plays an essential role in order to
provide a common understanding of the tasks
assigned to each actor, the roles involved actors
should play, and the explicit definition of the inputs
and outputs work products expected for each
considered tasks.

The EDONA project focuses on processes, method
and tools to improve the efficiency of embedded
software development in the automotive domain. It
aims at providing an open and seamless
development platform supporting the whole
development cycle. In particular, this platform offers
modeling tools dedicated to the description of
automotive software during the modeling steps
proposed by the methodology. These models are

 Page 2/8

defined at different abstraction level (organic view,
functional view, software view) with separate
languages: EAST-ADL2 for system modeling and
AUTOSAR for software modeling. These modeling
tools are directly coupled with a requirement
traceability management tool in order to keep
requirements as a central consideration during the
development and ensuring the consistency of
modeled requirements gathered at functional analysis
description steps, to detailed design of software
components. In addition, validation tools are
integrated in the toolset to verify that functional and
non functional properties are properly respected by
the models, and to make an early detection of
possible integration issues considering hardware
architecture, that can be distributed.

This paper intends to present the methodology and
the toolset previously mentioned. First, the modeling
phases from EAST-ADL2 system architecture
description to AUTOSAR software components
modeling are described. In a second part, this paper
focuses on the problem of requirement linking and
traceability management during the development. In
the last part EDONA results regarding verification and
validation during the modeling process are discussed.

All these results have been achieved within the
EDONA work package 1 led by Continental,
leveraging some work already done in several
projects, in particular the MeMVaTEx [3] project which
provides a methodology for requirements traceability,
ATESST project which provides a new EAST-ADL2
profile with Safety features and AUTOSAR link, and
TIMMO project which introduces a new timing
language TADL for EAST-ADL2 and AUTOSAR. This
work is tested in EDONA against an industrial use
case provided by Continental. This use case consists
in an understandable function within vehicles, the
Turn Signal Indicator, which will be used through this
paper to illustrate the proposed method and toolset.

2. Requirement Engineering

The TSI (Turn Signal Indicator) is a good example
which looks simple but turns out to be quite complex
at the end. The TSI "System" can accept a lot of
different inputs depending on human activation or
vehicle events and can activate various actuators as
it is described in Figure 1. Also depending on the
vehicle product line, the sensors/ actuators and even
the hardware architecture can be different: Steering
Column Stick (SCS) or Steering Wheel Button
(SWB). Weak requirements engineering with this kind
of "simple" function can be quickly critical to design if
requirement models are not traced into solution
models. Using the EDONA platform traceability tool
will solve part of the problem as it is described in the
following.

Figure 1 : TSI "System" Overview.

In system and software development, Requirement
Engineering (RE) is one of the main activities which
are difficult to manage correctly due to the amount of
heterogeneous information used. These documents
are coming from different sources and have different
forms. They can be for example text files under word
or any kind of text editors, MATLAB

TM
 or

STATEMATE
TM

 models or even verbal requests that
need to be formalized.

In first steps requirements, which specify what the
system should be or perform, are collected from the
different stake holders and integrated into a data-
base tool named DOORS

TM
. Then they are analyzed

and compared to existing requirements. During this
clarification phase with the Customer, requirements
still undergo significant changes. When this phase is
ending, the requirements are refined in Requirements
Specifications that can be compared with existing
requirements. The goal is to reuse as much as
possible existing requirements linked to existing
solution to optimize the effort. This step of RE can be
done in different phases of the Development cycle
(see Figure 2).

Market

Analysis

Acquisition &

Quote
Design & development Production

RE RE

RE

RE

RE

MGPP Product RS

System RS

(customer oriented)

Function RS

(platform oriented)

Software RS

Hardware RS

Figure 2: Requirement Engineering versus
Development life cycle.

Depending on the level of refinement, managed
documents will specify various requirements types:
system or SW functional requirements or Non
functional requirements like HW environment or
testing requirements. They can be created or already

 Page 3/8

existing as reusable assets. From this documentation
data-base, the developers can prepare their
Requirements Specification package which
represents entry documents needed for design.
Next steps will be to link requirements package to the
model solution. This will be described in chapter 4,
but for now the next chapter will propose how to
design efficiently a system model solution.

3. System modeling

The EAST-ADL2 specification is the main deliverable
of the ATESST European project. This chapter does
not intend to provide a complete overview of the
language, for this matter please refer to available
documentation or papers like [4] or [5]. Still a basic
reminder of the EAST-ADL2 structure and concepts
is given in the first part, and then the focus is placed
on EDONA improvements in the modeling tool.
Finally, the interoperability issue between EAST-
ADL2 and AUTOSAR and EDONA tooling support for
this are discussed.

3.1. A short overview of the EAST-ADL2

The EAST-ADL2 consists in a metamodel describing
the language concepts and their relationships to each
other. The goals of this domain specific language are
twofold, firstly it brings some abstraction capabilities
regarding AUTOSAR, and secondly it provides side
modeling features that enable early analysis and
validation during the system development.

E
A

S
T

-A
D

L
2

Vehicle
level

Vehicle feature model

Analysis

level
Analysis architecture model

Design

level
Design architecture model

Functional design

architecture

Middleware

abstraction

Hardware design

architecture

A
U

T
O

S
A

R
 Implem.

level

Implementation model

Oper.

level
Operational model

Figure 3 : Modeling abstraction levels in the
EAST-ADL2

The Figure 3 gives an overview of the model

abstraction levels proposed by the EAST-ADL2 to
describe automotive systems. The vehicle level aims
at defining the product from a feature point of view
and capturing possible variability shared by a set of
products. These features are derived into important
functions at the analysis level. These functions are
then refined at the design level, to reach a fine-
grained functional architecture description. At this
step, abstractions of the hardware and AUTOSAR
basic software are introduced. The AUTOSAR
language also takes part in this process as the

modeling language used for the implementation and
operational levels.

3.2. Modeling tools for the EAST-ADL2

The EDONA project targets the construction of an
open platform facilitating the realization of chains of
development trade modular, interoperable and
adaptable to the various needs of the actors and
trades of the car industry. In particular, the first work
package provides the tools for EAST-ADL2 modeling.
During the ATESST project, the EAST-ADL2 has
been implemented as a UML profile. One advantage
of such implementation is to benefit from existing
UML tools that can offer a full graphical modeling
support for a reduced development cost. EAST-ADL2
is implemented over an Eclipse-based open source
UML graphical editor, Papyrus. EDONA leverages
this work initiated during ATESST by improving the
profile implementation and Papyrus customization
features.

One enhancement is related to the profile
implementation itself. The EAST-ADL2 profile has
been implemented as a "static" profile, which means
that the stereotype application relies on a Java
implementation rather than being dynamically
instantiated at runtime by reading the profile
description. This is achieved by converting the profile
into an EMF data model and generating the model
access code from this model. As a result, the profile
implementation becomes quite close to a classical
EMF data model implementation, and enables the
use of some EMF compliant tools (model
transformation engines for instance) directly referring
to the EAST-ADL2 profile. Our implementation takes
advantage of the static profile nature to provide an
implementation to the derived properties defined in
the profile. A derived property is usually a read-only
property which value can be automatically computed
depending on the model context. Without such
implementation derived properties are often ignored
or manually filled in which implies a risk of modeling
error and a loss of time. Another improvement related
to the "static" nature of the profile is the contextual
selection of the icon associated to stereotypes. The
UML metamodel allows to add several image to a
stereotype but does not provide any mechanisms to
select which image is supposed to be used during
modeling. This choice can be automated in Papyrus
when a static profile is used, the chosen image being
return by an additional method ("getImage")
implemented in the static profile.

The second enhancement brought by EDONA is
related to the graphical representation of EAST-ADL2
concepts in the editor. Specific icons have been
applied to most stereotypes and are used in the
editor wherever it makes sense.

 Page 4/8

CustomizationCustomization
Profile managementProfile management

Stereotypes propertiesStereotypes properties

Figure 4 Papyrus editor graphical customization
for EAST-ADL2

The au-dessus figure shows the icons associated to
EAST-ADL2 concepts used in the different part of the
editor (model explorer, creation tools, diagrams,
property view) for a better understanding and
readability. The new icon set defined for language
support appear here as a replacement for default
UML related icons. The palette containing creation
tools has been customized for EAST-ADL2, meaning
that it becomes possible to create EAST-ADL2
element directly without the need to create a UML
element first and then apply a stereotype on it. This
customization has been initiated in ATESST and
extended in EDONA with the possibility to specify
post actions to any creation tool, in order to create a
pattern rather than a single element, or to define
default values.
Finally, an integration of EMF validation is included
and allows the specification of OCL or Java modeling
rules that can be verified with batch validation against
the model.

3.3. EAST-ADL2 and AUTOSAR interoperability

The EAST-ADL2 does not cover the implementation
and operational levels. Actually this would be useless
as AUTOSAR already exists and plays this role
perfectly. The problem is that using several
languages and therefore several modeling tool in the
development introduce discontinuity in the process
and likely interoperability issues.
Such interoperability consideration is largely
simplified by the technical choices made by Papyrus
and ARTOP the basic support for AUTOSAR used in
EDONA. Both tools consist in a set of Eclipse plug-in
with a data model that relies on the EMF and offer the
same kind of Java API to access and manipulate
models. The interoperability between these
formalisms is resolved in EDONA by a model
transformation component, named ARGateway,
taking the most detailed EAST-ADL2 model (Design
Architecture Model) as input and producing an
AUTOSAR model. The "translation" of concepts
between these languages is not quite difficult for most

of them as EAST-ADL2 was initially defined as an
abstraction of AUTOSAR. Moreover, both languages
use the same kind of component model (with variants
of Components, Ports, and Connectors) to depict
functional or software architecture.
One major difficulty comes from the fact that a Design
Architecture model and AUTOSAR model do not
depict the system from the same abstraction level.
This concerns the functional architecture from EAST-
ADL2 which is supposed to be converted in software
architecture in the AUTOSAR model, not only by a
refinement process but also by an architecture
refactoring step.

Figure 5 Example of functional to software
mapping (extracted from [6]

The Figure 5 is extracted from [6] where the main
mapping rules between EAST-ADL2 and AUTOSAR
are given and illustrated how the functional and
software architecture may differ. Given the fact that
an elementary (which is not further decomposed into
sub functions) ADLFunctionType is translated into a
RunnableEntity, the way RunnableEntity should be
grouped into ApplicationSoftwareComponentType in
the software architecture can completely differs from
the functional architecture. Reason why this
architecture differs may vary: allocation constraints of
software component on a physical hardware
topology, timing matters, safety considerations…
In a first version, ARGateway implemented two
mapping heuristics.

SW-C : Controller

Runnable : Controller

SW-C : Controller

Runnable : Controller

ASWC : Controller

Runnable : Controller

ASWC : ABS

Runnable : SpdCalc

Runnable : Hold

Runnable : Controller

Elementary function

Function

Mapping 1

Mapping 2

Figure 6 Function – Software mapping strategies
implemented in first version of ARGateway

 Page 5/8

As shown in the Figure 6 above the implemented
mapping choices were the following:

- Each elementary function transformed into a
software component with a single Runnable

- Each composition of elementary function
transformed into a single software component,
and the composed elementary functions
transformed into runnable and mapped to the
software function.

These mapping choices could not be easily
configured by the user and the result would requires
in most situation to be manually re-factored in the
AUTOSAR modeling tool used to complete the
modeling at the implementation level. The new
version of ARGateway realized in EDONA tackle
these limitations and introduces some mapping
flexibility by driving the transformation with a mapping
model provided by the user.

Figure 7 Example of allocation model

The Figure 7 is given as an example of allocation

model that can be used by ARGateway to map
functions to software components. To define
allocations, a minimal set of concepts from the
MARTE profile is used. MARTE is a specific
language for the modeling and analysis of real time
and embedded systems. This language is not
detailed in this paper, any additional information can
be found in the language specification [7] . For our
concern, only "Allocate" (or alternatively "Assign")
and "RTUnit" from MARTE are used. "Allocate"
describes a mapping of an entity on another, function
to software, or software to hardware in this case.
"RTUnit" is used here to represent a software
component. ARGateway generates the AUTOSAR
model with two pass, the first pass is pretty closed
from the first mapping strategy shown on Figure 6,

then the second pass reads the allocation model in
order to create software component, associate
runnables to these components and possibly re-factor
the communication means (using connector or inter
runnable variable) depending if runnables belong to
the same software component or not.
The AUTOSAR model generated by ARGateway is
obviously not complete as it is generated from a
model define at a higher abstraction level, containing
less details, but avoids a tedious and error prone
manual step of AUTOSAR model creation. The
generated AUTOSAR model respects AUTOSAR

XML definition and can be used in any AUTOSAR
modeling tool to go further on the implementation
model.

4. Requirement traceability and analysis

Requirement traceability and analysis may appear as
a theoretically simple problem. But the practice of it
faces a major difficulty linked to the essence of the
problem: tracking requirement throughout a project
life cycle often implies interfaces with the used tools,
and these tools are often different both on a company
basis and on a life cycle stage basis.

In spite of its intrinsic qualities, UML2 is rarely used
as the primary source in which requirements are
defined in industrial projects. Requirement
specifications often start with an office suite (word
processor, spreadsheet) and, in contexts in which the
importance of these requirements has been
recognized, are often captured in databases with
more or less requirement specific features. An
example of such a specialized database is MKS
INTEGRITY or TELELOGIC DOORS, which
centralizes Continental’s requirements in its Turn
Signal Indicator project.

But even in the most advanced cases of specialized
databases, few solutions are offered to connect
requirement management to other tools with the
appropriate granularity, and among those, to the tools
used by development teams.

What is missing is the glue between the various tools
used in a project life cycle.

Building on these grounds, GEENSOFT has created
a product called REQTIFY, which makes it possible
to extract and analyze the relations between
requirements and cover links expressed in most
industrially used tools. It is often used by project
leaders and/or people involved in quality assurance
(QA). However, until recently, it only offered features
to simplify the concrete work of defining cover links in
a limited number of proprietary tools.

Having recognized that tool integration is of utmost
importance in practical requirement traceability,
MyReq offers this tool integration framework. It is built
on Eclipse which appears today as the integration
platform on which many software editors and many
industrial users are developing their own tools.
Eclipse offers both a tested and proven base for
development and an interoperability solution: a plug-
in architecture, a set of views of common interest and
a bunch of useful integration services such as a
selection service and a Drag and Drop (DND)
framework.

 Page 6/8

Being essentially a tool to facilitate interoperability on
a practical point of view, MyReq uses these features.
But as it focuses on tool integration, MyReq rejects
the ambient paradigm of distribution (“tools that
hardly work together except hopefully one day”) and
strives to keep minimal dependencies, which, as will
be shown later, especially applies to UML profile
management.

Focusing on facilitating and accelerating the work of
development teams, MyReq also offers distinctive
features, among which:

 A default configuration that works out of the
box, although it can later be tailored to
specific needs.

 A real time requirement analysis engine,
because coverage information is more
efficiently provided in earlier stages of the
process.

4.1. From textual requirements to models

In the EDONA work package 1, MyReq has been
applied to the Turn Signal Indicator use case
provided by Continental.

Figure 8 : TSI requirements in DOORS.

The TSI requirements are defined in a DOORS
(Figure 8 above) database and in MICROSOFT
WORD documents. A common feature of both
specification formats is that requirements expressed
in natural language and enhanced by attributes that
only partly map to the formal EAST-ADL2 profile. For
example (see Figure 9), a requirement may be typed
as a “Functional req.”, which can understandably be
mapped to an “EAST-
ADL2::Requirements::FunctionalRequirement”.

Figure 9: DOORS requirement attributes

At this point, the immediate problem is that UML2
models can only handle requirements as UML2
classes to which the appropriate profile stereotypes
are applied. Manually creating these requirements in
UML2 models is feasible with intensive use of
clipboard, but it rapidly proves to be a both tedious
and error prone process. MyReq connector for
Papyrus developed in EDONA offers actions to
automatically create the requirement models, thereby
exposing in UML2 models the requirements created
by any tool for which a connector has been
developed.

The following table presents the main connectors that
have been developed for MyReq, both in EDONA and
proprietary projects.

Connector Status

Eclipse JDT Open source

Eclipse CDT Open source

Papyrus 1 Open source

Eclipse MDT Papyrus Open source

Open Office Proprietary

Autosar Builder Proprietary

Reqtify Proprietary

Noticeably, MyReq REQTIFY connector integrates
most commercial tools used in industrial projects in
Eclipse.

Earlier in EDONA project, MyReq connectors for
EAST-ADL2 and SysML were written using the
seducing “static” profile feature. But it rapidly turned
out that profiles may evolve and do not always
maintain backward compatibility. Connectors to
modeling tools were thus reviewed to only depend on
Eclipse UML2 API. The dependencies on a given
profile version are configured as regular expressions
in a preferences page that can be modified by the
user either to support new versions of an already
known profile or new profiles that were foreseen
initially.

 Page 7/8

Figure 10 : MyReq attribute mapping preferences

The screenshot in Figure 10 gives a hint of the way
the previously mentioned attribute mapping problem
is handled.

MyReq consequently supports any profile in both
Papyrus 1 and Eclipse MDT Papyrus. It could easily
be extended to support any modeling tool that
adheres to Eclipse UML2.

4.2. Covering requirements in models

MyReq exposes requirements from external tools to
development teams working with tools built on the
Eclipse platform. MyReq also goes beyond that point
by offering the easiest, most user-friendly means of
interaction/interoperability: drag and drop (DND).

The first DND based feature is that the user can drop
requirement defined in connected tools to create and
manually layout a requirement model. As already
mentioned, this greatly alleviates the work of copying
or updating requirements completely manually, while
letting full control over layout in contrast with the
automated import functions.

The second DND based feature is parameterized
cover link creation. For example, dropping a
functional requirement on a ConcreteVVCase is
translated into the creation of an ADLVerify
abstraction whereas dropping the same requirement
on another functional requirement creates an
ADLDeriveReqt realization (see Figure 11). A default
configuration for this is provided, but it can at any
time be modified by the (admittedly advanced) user to
meet his/her particular needs.

Figure 11 : Result of DND on a concrete VV test

MyReq is a practical tool in that virtually any
operation involved in tracing requirements can be
performed in one DND.

Among other noticeable features, a Requirement
view presents automatically updated error/warning
markers, which makes it possible to instantly get an
overview of what has been covered and what
remains to be covered.

Figure 12 : Turn Signal Indicator edited with
Papyrus and MyReq

Access to the source definition of requirement is also
simplified by an action that, through the MyReq
REQTIFY connector, opens the source document at
the appropriate location.

4.3. Traceability analysis

This task is usually mostly performed by QA people
and project leaders. Although MyReq offers a first
level of traceability (limited to a depth of 1), it does
not directly provide deeper analysis neither reporting
features (Figure 13). These advanced features can
be seamlessly accessed in REQTIFY.

Figure 13 : Turn Signal Indicator coverage
analysis in REQTIFY with Papyrus connector

The traceability analysis features typically answer the
following questions:

 Are the specified requirements taken into
account throughout the project life cycle?

 Page 8/8

 What are the impacts of modifying a given
requirement?

 What requirements are no longer fulfilled
given a bug?

In support to its traceability analysis and extensive
reporting features, REQTIFY also offers a function
that directly opens Eclipse on the appropriate view
showing a covering element or requirement.

4.4. Final overview

Figure 14: Full requirement traceability process

As illustrated in the Figure 14, the tools previously
described provide a continuous tool chain, from
requirement specification to implementation on one
hand, and verification and validation on the other
hand. Cost reduction in the whole life cycle is
expected as a result of this continuity and the
efficiency of the tools used to achieve it.

5. Conclusion

We have presented a seamless Model Driven
development with the EDONA platform on an
automotive application. The EDONA platform is
supporting Requirement Engineering as main activity
in all levels of the development cycle synchronized
easily with the other activities like model solution
design, coding or even testing thanks to MyReq
traceability plug-in. In the same way, the modeler
Papyrus is supporting directly the EAST-ADL2 profile
to model all high levels of the architecture. For the
implementation level, the ARGAteway plug-in allows
the transformation of EAST-ADL2 artifacts into
AUTOSAR SW Components. Finally requirements
covering analysis is simplified thanks to REQTIFY
and MyReq. This integration of all these plug-ins

within the same platform guarantees interoperability
between the different tools.

The next steps will be to introduce the variant
handling into the Solution model and finalize the
introduction of MARTE to integrate easily timing
properties into the model and to allow Timing analysis
as soon as possible in the development phases.

6. References

[1] Edona project : www.edona.fr

[2] The AUTOSAR Consortium : www.autosar.org

[3] MeMVaTEx project : www.memvatex.org

[4] The ATESST Consortium: "EAST-ADL 2.0
Specification", www.atesst.org, 2008.

 [5] P. Cuenot, P. Frey, R. Johansson, H. Lönn, M-O
Reiser, D. Servat, R. Tavakoli Koligari, D.J. Chen. :
"Developing automotive products using the EAST-
ADL2, and Autosar compliant architecture
description language", ERTS, Toulouse, 2008.

 [6] The ATESST Consortium: "D3.2 - Report on the
behavior modeling in the EAST-ADL2.0", 2008.

 [7] OMG: "UML Profile for Modeling and Analysis of
Real-time and Embedded Systems (MARTE)", OMG
Document Number: ptc/07-08-04, 2007.

7. Glossary

AUTOSAR:AUTtomotive Open System ARchitecture
(www.autosar.org)

ATESST: Advanced Traffic Efficiency and Safety through
Software Technology (www.atesst.org)

UML: Unified Modeling Language

EMF: Eclipse Modeling Framework

www.edona.fr
www.autosar.org
www.memvatex.org
http://www.atesst.org/
http://www.autosar.org/
http://www.atesst.org/

